Искусственный интеллект


Нейронные сети: основные положения - часть 7


Однако не все из них могут быть разделимы данной НС.

Например, однослойный перцептрон, состоящий из одного нейрона с двумя входами, представленный на рисунке 5, не способен разделить плоскость (двумерное гиперпространоство) на две полуплоскости так, чтобы осуществить классификацию входных сигналов по классам A и B (см. таблицу 1).

Уравнение сети для этого случая

(14)

является уравнением прямой (одномерной гиперплоскости), которая ни при каких условиях не может разделить плоскость так, чтобы точки из множества входных сигналов, принадлежащие разным классам, оказались по разные стороны от прямой (см. рисунок 6).

Если присмотреться к таблице 1, можно заметить, что данное разбиение на классы реализует логическую функцию исключающего ИЛИ для входных сигналов. Невозможность реализации однослойным перцептроном этой функции получила название проблемы исключающего ИЛИ.

Функции, которые не реализуются однослойной сетью, называются линейно неразделимыми[2]. Решение задач, подпадающих под это ограничение, заключается в применении 2-х и более слойных сетей или сетей с нелинейными синапсами, однако и тогда существует вероятность, что корректное разделение некоторых входных сигналов на классы невозможно.

Наконец, мы можем более подробно рассмотреть вопрос обучения НС, для начала – на примере перцептрона с рисунка 3.

Рассмотрим алгоритм обучения с учителем[2][4].

1. Проинициализировать элементы весовой матрицы (обычно небольшими случайными значениями).

2. Подать на входы один из входных векторов, которые сеть должна научиться различать, и вычислить ее выход.

3. Если выход правильный, перейти на шаг 4.

Иначе вычислить разницу между идеальным и полученным значениями выхода:

Модифицировать веса в соответствии с формулой:

где t и t+1 – номера соответственно текущей и следующей итераций; n – коэффициент скорости обучения, 0<n Ј1; i – номер входа; j – номер нейрона в слое.

Очевидно, что если YI > Y весовые коэффициенты будут увеличены и тем самым уменьшат ошибку.


Начало  Назад  Вперед