Искусственный интеллект


Нейронные сети: обучение без учителя - часть 4


В данном случае, "побеждает" нейрон с наименьшим расстоянием. Иногда слишком часто получающие аккредитацию нейроны принудительно исключаются из рассмотрения, чтобы "уравнять права" всех нейронов слоя. Простейший вариант такого алгоритма заключается в торможении только что выигравшего нейрона.

При использовании обучения по алгоритму Кохонена существует практика нормализации входных образов, а так же – на стадии инициализации – и нормализации начальных значений весовых коэффициентов.

, (5)

где xi – i-ая компонента вектора входного образа или вектора весовых коэффициентов, а n – его размерность. Это позволяет сократить длительность процесса обучения.

Инициализация весовых коэффициентов случайными значениями может привести к тому, что различные классы, которым соответствуют плотно распределенные входные образы, сольются или, наоборот, раздробятся на дополнительные подклассы в случае близких образов одного и того же класса. Для избежания такой ситуации используется метод выпуклой комбинации[3]. Суть его сводится к тому, что входные нормализованные образы подвергаются преобразованию:

, (6)

где xi – i-ая компонента входного образа, n – общее число его компонент, a (t) – коэффициент, изменяющийся в процессе обучения от нуля до единицы, в результате чего вначале на входы сети подаются практически одинаковые образы, а с течением времени они все больше сходятся к исходным. Весовые коэффициенты устанавливаются на шаге инициализации равными величине

, (7)

где n – размерность вектора весов для нейронов инициализируемого слоя.

На основе рассмотренного выше метода строятся нейронные сети особого типа – так называемые самоорганизующиеся структуры – self-organizing feature maps (этот устоявшийся перевод с английского, на мой взгляд, не очень удачен, так как, речь идет не об изменении структуры сети, а только о подстройке синапсов). Для них после выбора из слоя n нейрона j с минимальным расстоянием Dj (4) обучается по формуле (3) не только этот нейрон, но и его соседи, расположенные в окрестности R.


Начало  Назад  Вперед



Книжный магазин