Искусственный интеллект


Алгоритмы обучения искусственных нейронных сетей - часть 6


В представленном же вместе со статьей тесте число итераций, выполняющих обучение, вообще говоря, эмпирически задано равным 3000.

В состав класса LayerUL входит массив нейронов neurons и переменная с размерностью массивов синапсов – neuronrang. Метод распределения нейронов – внешний или внутренний – определяется тем, как создавался слой. Этот признак хранится в переменной allocation. Конструктор LayerUL(unsigned, unsigned) сам распределяет память под нейроны, что соответствует внутренней инициализации; конструктор LayerUL(NeuronUL _FAR *, unsigned, unsigned) создает слой из уже готового, внешнего массива нейронов. Все методы этого класса аналогичны соответствующим методам класса LayerFF и, в большинстве своем, используют одноименные методы класса NeuronUL.

В классе NetUL также особое внимание необходимо уделить конструкторам. Один из них – NetUL(unsigned n) создает сеть из n пустых слоев, которые затем необходимо заполнить с помощью метода SetLayer. Конструктор NetUL(unsigned n, unsigned n1, ...) не только создает сеть из n слоев, но и распределяет для них соответствующее число нейронов с синапсами, обеспечивающими полносвязность сети. После создания сети необходимо связать все нейроны с помощью метода FullConnect. Как и в случае сети обратного распространения, сеть можно сохранять и загружать в/из файла с помощью методов SaveToFile, LoadFromFile. Из всех остальных методов класса новыми по сути являются лишь NormalizeNetInputs и ConvexCombination. Первый из них нормализует входные вектора, а второй реализует преобразование выпуклой комбинации (6).

В конце заголовочного файла описаны глобальные функции. SetSigmoidTypeUL, SetSigmoidAlfaUL и SetDSigmaUL аналогичны одноименным функциям для сети обратного распространения. Функция SetAccreditationUL устанавливает режим, при котором эффективность обучения нейронов, попавших в окружение наиболее возбужденного на данной итерации нейрона, пропорциональна функции Гаусса от расстояния до центра области обучения. Если этот режим не включен, то все нейроны попавшие в область с текущим радиусом обучения одинаково быстро подстраивают свои синапсы, причем область является квадратом со стороной, равной радиусу обучения.


Начало  Назад  Вперед



Книжный магазин